PHYS 301 Electricity and Magnetism

Dr. Gregory W. Clark Fall 2019

- Quiz!!
- Integral vector calculus

Today!

TWO THEOREMS:

FOR CURL-LESS (IRROTATIONAL) FIELDS:

- i) $\vec{\nabla} \times \vec{F} = 0$
- (ii) $\int_a^b \vec{F} \cdot d\vec{l}$ is path independent
- iii) $\oint \vec{F} \cdot d\vec{l} = 0 \ \forall \ \text{closed loops}$
- iv) $\vec{F} = \vec{\nabla} V$

Recall that $\vec{\nabla} \times (\vec{\nabla} f) = 0$

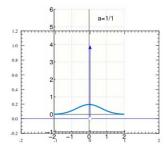
FOR DIVERGENCE-LESS (SOLENOIDAL) FIELDS:

Recall that $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$

- i) $\vec{\nabla} \cdot \vec{F} = 0 \ \forall \ \mathrm{space}$
- ii) $\int \vec{F} \cdot d\vec{a}$ is surface independent
- iii) $\oint \vec{F} \cdot d\vec{a} = 0 \ \forall \ \text{closed surfaces}$
- iv) $\vec{F} = \vec{\nabla} \times \vec{A}$

In 1D:
$$\delta(x) = \begin{cases} 0, & x \neq 0 \\ \infty, & x = 0 \end{cases}$$

AND
$$\int_{0}^{+\infty} \delta(x) \, dx = 1$$



NOTE:

$$f(x)\delta(x) = f(0)\delta(x)$$

\times "normal" functions $f(x)$

$$\therefore \int_{-\infty}^{+\infty} f(x)\delta(x)dx = f(0)\int_{-\infty}^{+\infty} \delta(x)dx = f(0)$$

Limits are actually arbitrary, as long as they include x = 0!

More generally,

$$\delta(x-a) = \begin{cases} 0, & x \neq a \\ \infty, & x = a \end{cases}$$

and
$$\int_{-\infty}^{+\infty} \delta(x-a) dx = 1$$
$$\therefore \int_{-\infty}^{+\infty} f(x) \delta(x-a) dx = f(a)$$

$$\therefore \int_{-\infty}^{+\infty} f(x)\delta(x-a)dx = f(a)$$

In 3D:
$$\delta^3(\vec{r}) = \delta(x)\delta(y)\delta(z)$$
 where $\vec{r} \equiv \hat{i}x + \hat{j}y + \hat{k}z$ it turns out that
$$\text{and } \int_{all\ space} \delta^3(\vec{r})d\tau = 1$$

$$\vec{\nabla} \cdot \left(\frac{\vec{\rho}}{\rho^3}\right) = 4\pi\delta^3(\vec{\rho})$$

$$\vec{\nabla} \cdot \left(\frac{\vec{\rho}}{\rho^3}\right) = 4\pi\delta^3(\vec{\rho})$$
 including
$$\vec{r}_o = 0$$

Integral Calculus: Curls

• The fundamental theorem of curls:

$$\int\limits_{\text{surface}} \left(\vec{\nabla} \times \vec{V} \right) \cdot d\vec{A} = \oint\limits_{\text{line}} \vec{V} \cdot d\vec{l}$$

Also called STOKES' THEOREM